Search results

Search for "radical addition" in Full Text gives 109 result(s) in Beilstein Journal of Organic Chemistry.

Advancements in hydrochlorination of alkenes

  • Daniel S. Müller

Beilstein J. Org. Chem. 2024, 20, 787–814, doi:10.3762/bjoc.20.72

Graphical Abstract
  • of the Co–H to the alkene but of a step-wise radical addition. A similar procedure was reported by Herzon [85]. His study focused on the use of two reductants, triethylsilane and 1,4-dihydrobenzene (DHB) (Scheme 24). He showed that in the presence of DHB, the intermediate radical could be trapped by
PDF
Album
Review
Published 15 Apr 2024

SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes

  • Julien Borrel and
  • Jerome Waser

Beilstein J. Org. Chem. 2024, 20, 701–713, doi:10.3762/bjoc.20.64

Graphical Abstract
  • , reaction 2). Two classes of reagents are commonly used: ethynylbenziodoxolones (EBXs) [32][33] and alkynylsulfones [34]. A potential limitation of this method lies in the substitution of the transferred alkyne. The efficiency of the radical addition to those reagents is known to be highly dependent on the
  • remaining (Table 1, entry 15). Styrene was initially selected as model substrate since the addition of azide radicals generated by ABX was well reported [24][29]. We wanted to explore different classes of alkenes as the double bond substitution would greatly impact both the azide radical addition and the
PDF
Album
Supp Info
Commentary
Published 03 Apr 2024

Palladium-catalyzed three-component radical-polar crossover carboamination of 1,3-dienes or allenes with diazo esters and amines

  • Geng-Xin Liu,
  • Xiao-Ting Jie,
  • Ge-Jun Niu,
  • Li-Sheng Yang,
  • Xing-Lin Li,
  • Jian Luo and
  • Wen-Hao Hu

Beilstein J. Org. Chem. 2024, 20, 661–671, doi:10.3762/bjoc.20.59

Graphical Abstract
  • diverse alkenes followed by a diradical coupling or radical addition process to achieve the difunctionalization (Scheme 1b, middle) [32][33][34][35][36][37]. However, to the best of our knowledge, the methodology involving the addition of a carbon radical from a diazo compound onto the double bond of an
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • undergo addition to the heterocyclic radical acceptor 19 through a ternary transition state 20 involving hydrogen bonding interactions with the chiral phosphate co-catalyst. Notably, a follow-up report revealed that the radical addition is reversible, and that the selectivity determining step involves the
  • the phthalimide moiety (Scheme 7B). Thus, the excited state reductant *IrIII reduces the activated substrate 29 to form the stabilized radical anion 30. Fragmentation into radical 9, followed by radical addition to styrene gives benzyl radical intermediate 26. Turn-over of the catalytic cycle through
  • Stern–Volmer constant (Ksv = 1146 M−1 with acid vs Ksv = 603 M−1 without acid). The reaction mechanism continues with the fragmentation of 33 into radical 34. From radical 34 the annulation reaction initiates via intermolecular radical addition, resulting in the formation of intermediate 35. After
PDF
Album
Perspective
Published 21 Feb 2024

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  •  15) [27]. This method involved a series of steps, including the formation of an EDA complex, decarboxylation, radical addition, C–H functionalization, and annulation. Various primary, secondary, and tertiary alkyl N-hydroxyphthalimide esters 33 showed potential as viable substrates for the synthesis
PDF
Album
Review
Published 22 Nov 2023

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • be more widely employed. 2 Other polymerization techniques involving radical chemistry As discussed in section 1, chain-growth polymerization via radical addition to vinyl monomers is the most broadly applied polymerization technique. However, radical chemistry is used in other polymerization systems
  • ]. In a typical thiol–ene system, the polymerization undergoes a free-radical chain mechanism, involving an initiation step from a thiol group via radical transfer or homolysis (Scheme 11, initiation), radical addition of the thiyl radical to the ene functionality (propagation 1), transfer from the
  • Radical addition is a popular technique for post-polymerization modification of double-bond-containing polymers (Scheme 14). Thiol–ene and thiol–yne “click chemistry” are highly efficient radical processes well-adopted in synthetic chemistry, material fabrication, and chemical biology (cf. section 2.2
PDF
Album
Review
Published 18 Oct 2023

α-(Aminomethyl)acrylates as acceptors in radical–polar crossover 1,4-additions of dialkylzincs: insights into enolate formation and trapping

  • Angel Palillero-Cisneros,
  • Paola G. Gordillo-Guerra,
  • Fernando García-Alvarez,
  • Olivier Jackowski,
  • Franck Ferreira,
  • Fabrice Chemla,
  • Joel L. Terán and
  • Alejandro Perez-Luna

Beilstein J. Org. Chem. 2023, 19, 1443–1451, doi:10.3762/bjoc.19.103

Graphical Abstract
  • a radical addition mechanism. This is further supported by the result of an I-atom transfer experiment (Scheme 7, top). In the presence of two equivalents of iPrI, the reaction of 8a with Et2Zn leads to a mixture of product 14a and product 25a, incorporating an iPr moiety, in a 14a/25a 30:70 mixture
  • . Product 25a is formed on addition of an iPr radical generated by I-atom transfer from iPrI to the Et radical, and is diagnostic for the formation of the latter in the reaction medium. Deuterium labeling experiments were then performed to substantiate the formation of a zinc enolate following radical
  • addition (Scheme 7, bottom). Much to our surprise however, no deuterium incorporation is observed on quenching with ND4Cl/D2O the reaction between 8a and Et2Zn. By contrast, a significant deuterium incorporation is obtained when deuterated starting material (8a-d) is engaged. The combination of these two
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2023

Radical ligand transfer: a general strategy for radical functionalization

  • David T. Nemoto Jr,
  • Kang-Jie Bian,
  • Shih-Chieh Kao and
  • Julian G. West

Beilstein J. Org. Chem. 2023, 19, 1225–1233, doi:10.3762/bjoc.19.90

Graphical Abstract
  • driven by several key features of RLT catalysis, including the ability to form diverse bonds (including C–X, C–N, and C–S), the use of simple earth abundant element catalysts, and the intrinsic compatibility of this approach with varied radical generation methods, including HAT, radical addition, and
  • of RLT with photoredox-catalyzed atom transfer radical addition (ATRA) (Scheme 3). ATRA results in the net addition of a C–X bond across an alkene, forming both valuable C–C and C–X bonds in a single reaction. While ATRA-type reactions were first reported in the 1940s by Kharasch [28], interest in
  • species. Areas of recent work on RLT development and application in catalysis. I: Reported RLT pathways often involve the generation of alkyl radicals from selective HAT on C–H bonds and, more recently, radial decarboxylation and radical addition onto π systems. Generated alkyl radicals are simultaneously
PDF
Album
Perspective
Published 15 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • ]. In 2019, the Prato group demonstrated how the PDI catalyst first disclosed by the König group (vide supra) could be leveraged for conPET reductions of perfluoroalkyl iodides, providing a photocatalytic alternative for the generation of perfluoroalkyl radicals used in atom transfer radical addition
PDF
Album
Review
Published 28 Jul 2023

Photoredox catalysis enabling decarboxylative radical cyclization of γ,γ-dimethylallyltryptophan (DMAT) derivatives: formal synthesis of 6,7-secoagroclavine

  • Alessio Regni,
  • Francesca Bartoccini and
  • Giovanni Piersanti

Beilstein J. Org. Chem. 2023, 19, 918–927, doi:10.3762/bjoc.19.70

Graphical Abstract
  • )PF6 (E1/2*III/II = +1.21 V, E1/2III/II = −1.37; E1/2IV/*III = −0.89, E1/2 IV/III = +1.69 V) [74] would permit efficient radical generation and C(sp3)–C(sp3) bond formation either by challenging selective radical–radical cross-coupling or by radical addition to a π-bond, enabling a rare example of
  • diene [90][91]. In addition, these results support the hypothesis that the decarboxylative cyclization can occur through subsequent selective 6-exo-trig radical addition. It also has been reported that it is difficult to detect which intermediate is really involved, since they are easily
  • radical addition–fragmentation on the latter and most likely to shift the regioselectivity towards 6-exo-trig by a favorable interplay of polar effects [99] failed and furnished only the 1,3-diene 10. Unfortunately, when substrate 10 was subjected to the reaction conditions shown above, only tarry
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • in the formation of spirolactam 157 in 73% yield (Scheme 13). The reaction is estimated to take place initially with the one electron reduction to α-amino radical 164. This step is thought to be facilitated after TFA protonates the formed imine. Afterwards, radical addition of 164 to 156, generates
PDF
Album
Review
Published 02 Jan 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • -coupling involving aldehyde C–H bond cleavage. DABCO-derived cationic catalysts in inactivated C–H bond cleavage for alkyl radical addition to electron-deficient alkenes under photoredox catalysis conditions. Electrochemical diamination and dioxygenation of vinylarenes catalyzed by triarylamines
PDF
Album
Perspective
Published 09 Dec 2022

A Streptomyces P450 enzyme dimerizes isoflavones from plants

  • Run-Zhou Liu,
  • Shanchong Chen and
  • Lihan Zhang

Beilstein J. Org. Chem. 2022, 18, 1107–1115, doi:10.3762/bjoc.18.113

Graphical Abstract
  • , Supporting Information File 1). Other plant polyketides, such as anthraquinones 19 and 20 and phenylpropanoids 21–24, failed to be dimerized. The reaction mechanism of P450-mediated phenol dimerization is believed to involve oxidative radical–radical coupling, though other mechanisms, such as radical
  • addition, radical cation addition, and electrophilic aromatic addition, have also been proposed [1][10][29]. A proposed mechanism is depicted in Scheme 2: First, the hydroxy group on the A- or B-ring is converted into a radical by a P450-induced single-electron transformation. The resulting radical then
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2022

Electroreductive coupling of 2-acylbenzoates with α,β-unsaturated carbonyl compounds: density functional theory study on product selectivity

  • Naoki Kise and
  • Toshihiko Sakurai

Beilstein J. Org. Chem. 2022, 18, 956–962, doi:10.3762/bjoc.18.95

Graphical Abstract
  • Scheme 5. The first one is a radical addition of O-trimethylsilyl radical A, which is formed by a one-electron reduction of 1 and subsequent O-trimethylsilylation, to 2a and a following one-electron reduction of the resultant radical B to give enolate anion D (path a). The second one is an anionic
  • acrylate (2c) is much less reactive as an acceptor in this reaction as shown in Scheme 6. The main product in this case was the same dimeric phthalide 9 as the product without the acceptor. These results suggest that this reaction proceeds with the radical addition of A to form anion D (path a). Next, the
PDF
Album
Supp Info
Full Research Paper
Published 02 Aug 2022

Synthesis of α-(perfluoroalkylsulfonyl)propiophenones: a new set of reagents for the light-mediated perfluoroalkylation of aromatics

  • Durbis J. Castillo-Pazos,
  • Juan D. Lasso and
  • Chao-Jun Li

Beilstein J. Org. Chem. 2022, 18, 788–795, doi:10.3762/bjoc.18.79

Graphical Abstract
  • -sulfonylpropiophenone moiety readily undergoes homolysis into three parts upon irradiation of light: a propiophenone radical – forming a stabilized and bulky “dummy group” –, a molecule of SO2, and our radical of interest. Once this radical is formed in solution, radical addition to the aromatic substrate undergoes
  • ), both in less than 6 hours (Scheme 5). Unsubstituted arenes such as naphthalene were well tolerated in this methodology and produced 72% isolated yield of the perfluorohexylated product 11b. The radical addition to unsubstituted benzene was also found to be possible affording perfluorooctylated product
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2022

Structural basis for endoperoxide-forming oxygenases

  • Takahiro Mori and
  • Ikuro Abe

Beilstein J. Org. Chem. 2022, 18, 707–721, doi:10.3762/bjoc.18.71

Graphical Abstract
  • changes of the active site residues on flexible loops would relocate the C13 radical intermediate, to prevent the hydroxy-rebound from the Fe(III)-OH species. Alternatively, the C13-radical reacts with molecular oxygen to form a peroxyl radical intermediate, which undergoes radical addition to C2' to
PDF
Album
Review
Published 21 Jun 2022

Direct C–H amination reactions of arenes with N-hydroxyphthalimides catalyzed by cuprous bromide

  • Dongming Zhang,
  • Bin Lv,
  • Pan Gao,
  • Xiaodong Jia and
  • Yu Yuan

Beilstein J. Org. Chem. 2022, 18, 647–652, doi:10.3762/bjoc.18.65

Graphical Abstract
  • -electron transfer (SET) between CuBr and intermediate 5 forms intermediate 6, which initiates the N–O bond homolytic cleavage resulting in forming an N-centred phthalimidyl radical 7 (PhthN•) and anion 8. Meanwhile, Cu(I) is oxidized to Cu(II) in this step. Next, radical 7 attacks the benzene via radical
  • addition to generate the intermediate 9, which is oxidized by Cu(II) to give 10, which undergoes aromatization and deprotonation to afford the product 3a. At this stage, Cu(I) is regenerated to complete the catalytic cycle. Conclusion In summary, we have developed a convenient copper-catalyzed method for
PDF
Album
Supp Info
Letter
Published 03 Jun 2022

BINOL as a chiral element in mechanically interlocked molecules

  • Matthias Krajnc and
  • Jochen Niemeyer

Beilstein J. Org. Chem. 2022, 18, 508–523, doi:10.3762/bjoc.18.53

Graphical Abstract
  • radical addition of a thiol-based stopper to the α,β-unsaturated carbonyl unit in 12% yield. In this reaction, addition of the thiyl radical to the β-position first gives rise to the corresponding rotaxane radical with the unpaired electron in the α-position, followed by hydrogen abstraction from the next
PDF
Album
Review
Published 06 May 2022

Menadione: a platform and a target to valuable compounds synthesis

  • Acácio S. de Souza,
  • Ruan Carlos B. Ribeiro,
  • Dora C. S. Costa,
  • Fernanda P. Pauli,
  • David R. Pinho,
  • Matheus G. de Moraes,
  • Fernando de C. da Silva,
  • Luana da S. M. Forezi and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 381–419, doi:10.3762/bjoc.18.43

Graphical Abstract
  • studies developed by Naturale’s group, α-, β-, and γ-amino acids of linear and branched chains were used, as well as different amine protection groups (Table 5). The results revealed that the functionalization of naphthoquinones by a radical addition of decarboxylated α-, β- and γ-N-protected amino acids
PDF
Album
Review
Published 11 Apr 2022

Site-selective reactions mediated by molecular containers

  • Rui Wang and
  • Yang Yu

Beilstein J. Org. Chem. 2022, 18, 309–324, doi:10.3762/bjoc.18.35

Graphical Abstract
  • mixture of different products will form through various pathways [50][51][52][53]. By applying the cage host A, the authors realized a highly site-selective radical addition reaction of o-quinone 10 and substituted toluene 11, giving rise to the unusual 1,4-adduct 15 (Figure 3) [54]. Specifically, upon
  • naphthalene and phthalimide mediated by cage host A. Cage host A-mediated selective 1,4-radical addition of o-quinone 10. Cyclodextrin-mediated site-selective reductions. Selective reduction of an α,ω-diazide compound mediated by water-soluble cavitand D. Selective radical reduction of α,ω-dihalides mediated
PDF
Album
Review
Published 14 Mar 2022

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • initiated, the reaction will propagate, which typically involves the insertion of a π-system (carbometallation of alkenes/alkynes) in the case of organoiron species (Scheme 2). Alternatively, the generated radical species may undergo radical addition to alkenes, alkynes, or aromatic arenes. The final step
  • is the termination of the reaction through the trapping of the reactive intermediate. Organoiron complexes have been shown to undergo electrophilic trapping with external species or proceed through cross-coupling eventually undergoing reductive elimination. Radical addition will typically conclude
  • sterically hindered tertiary alkyl bromides, the authors were able to favor intermolecular radical addition of the generated alkyl radical 17 to the vinylcyclopropane, outcompeting radical rebound to an aryl Fe species. The incipient radical can then undergo ring-opening of the cyclopropane 18. Work by
PDF
Album
Review
Published 07 Dec 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • strategy for the construction of complex molecules. The primary process involved in the 1,2-difunctionalization of alkenes catalyzed by copper complexes is an atom-transfer radical addition (ATRA). Copper complexes or copper-based photoredox-active complexes formed in situ serve as photocatalysts to
  • undergoes radical addition with the N-substituted maleimide (Scheme 25). In 2017, Wu and co-workers [94] reported the α-amino C−H functionalization of aromatic amines 51 with nucleophiles, including arynes or aromatic olefins 52, indoles, acyclic β-ketoester 53, and β-diketone 54 (Scheme 26). Mechanistic
PDF
Album
Review
Published 12 Oct 2021

Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives

  • Yi Liu,
  • Puying Luo,
  • Yang Fu,
  • Tianxin Hao,
  • Xuan Liu,
  • Qiuping Ding and
  • Yiyuan Peng

Beilstein J. Org. Chem. 2021, 17, 2462–2476, doi:10.3762/bjoc.17.163

Graphical Abstract
  • -annulation reaction may undergo a free-radical addition pathway. Firstly, NFSI oxidizes Cu(I) to form bissulfonylamidyl radical 10. Secondly, intermolecular nitrogen free-radical addition to the alkyne provides the vinyl radical 11. Then, there may be two possible pathways. Path a: vinyl radical 11 is
PDF
Album
Review
Published 22 Sep 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • computational studies highlight the involvement of hydrogen bonding assistance during the radical addition to olefine. The proposed reaction mechanism has two synergistic catalytic cycles, namely a photocatalytic cycle and a nickel catalytic cycle (Figure 23). The photoexcitation of the ketone PC 96 results in
PDF
Album
Review
Published 31 Aug 2021
Other Beilstein-Institut Open Science Activities